REDUCTION OF OXIMES WITH HYDROSILANE/H+ REAGENT

Makoto FUJITA, Haruhito OISHI, and Tamejiro HIYAMA*

Sagami Chemical Research Center, 4-4-1 Nishiohnuma, Sagamihara, Kanagawa 229

Hydrosilane/H⁺ reagent reduced oximes in good yields. Stereospecific reduction of (2-acetoxy-1-phenylpropylidene)benzyloxyazane (3) was observed: the (E)-isomer gave erythro-1-phenyl-1-benzyloxy-amino-2-propanol (4) in 99% selectivity, whereas (Z)-3 afforded the three isomer of 4 in 76% selectivity.

Reduction of ketones with hydrosilane/ H^+ reagent is shown to be a powerful and reliable method for the synthesis of erythro-isomers of 2-amino alcohols, 1,2-diols, and 3-hydroxyalkanoic acid derivatives. Peported herein is the reduction of oximes 2,3 with the same reagent, in which amines, particularly 2-amino alcohols of biological interest, are readily produced under high stereocontrol.

When benzylidenebenzyloxyazane (1a) was treated with dimethylphenylsilane (1.2 mol-equiv) in trifluoroacetic acid (TFA) at room temperature, the reduction proceeded smoothly and N-benzyloxybenzylamine (2a) was isolated in 75% yield after workup and purification. O-Protected oximes of benzaldehyde, acetophenone, and cyclohexanone (1a-d) were easily reduced, whereas an acyclic aliphatic derivative 1e was reduced only in 23% yield even under forcing conditions (50 °C, 5 d, with 2 mol of HSiMe₂Ph), as summarized in Table 1.

$$R^{1}$$
 $C=N\sim OR^{3}$ + $H-SiMe_{2}Ph$ TFA R^{2} $CH-NHOR^{3}$

Table 1. Reduction of Oximes with PhMe₂SiH/H⁺ Reagent a)

Oxime	R ¹	R ²	R ³	Conditions	Yield/%
1a	Ph	Н	CH ₂ Ph	rt, overnight	75
1ь	Ph	Me	COMe	rt, overnight	67
1c	Ph	Me	COPh	rt, overnight	78
1d	-(CH ₂) ₅ -	CH ₂ Ph	rt, 24 h ^{b)}	65
1e	С ₇ Н ₁₅	Me	CH ₂ Ph	50 °C, 5 d ^{c)}	23

a) Carried out with HSiMe₂Ph (1.2 mol) in TFA or TFA-CH₂Cl₂ (1:1)(1-2 cm³/mmol).

b) KF (1 mol) was added. c) ${\rm HSiMe_2Ph}$ (2 mol) was employed.

It is noteworthy that stereospecificity was observed in the hydrosilane/H $^+$ reduction of (2-acetoxy-1-phenylpropylidene)benzyloxyazane (3). When the (E)-isomer 4 , 5) 3a was allowed to react with PhMe $_2$ SiH in CF $_3$ COOH (rt, overnight), erythro-1-phenyl-1-benzyloxyamino-2-propanol (4a) was obtained in 99% selectivity 6) (77% yield). In contrast, the (Z)-isomer 4 , 5) 3b gave the threo isomer 4b preferentially 6) (4a: 4b = 24: 76). These results contrast to lithium aluminum hydride reduction 9) wherein no stereospecificity was observed. Lithium aluminum hydride reduction of 4a affords naturally occurring erythro-1-phenyl-1-amino-2-propanol (norisoephedrine).

Starting material	Reducing agent (solvent)	Yield/%	4a : 4b	
3a	HSiMe ₂ Ph/TFA	73	99 : 1	
3a	LiAlH ₄ (Et ₂ 0)	46	82:18	
3Ь	HSiMe ₂ Ph/TFA	77	24 : 76	
3b	LiAlH ₄ (Et ₂ 0)	39	58 : 42	

References

838

- 1) M. Fujita and T. Hiyama, J. Am. Chem. Soc., <u>106</u>, 4629 (1984); M. Fujita and T. Hiyama, ibid., <u>107</u>, 8294 (1985).
- 2) Loim reported imines of the formula ArCH=NAr' only were reduced with Et₃SiH/CF₃COOH: N. M. Loim, Izv. Akad. Nauk. SSSR, Ser. Khim., <u>1968</u>, 1418.
- 3) Hydrosilylation of imines catalyzed by $RhCl(PPh_3)_3$ or $PdCl_2$: I. Ojima and T. Kogure, Tetrahedron Lett., 1973, 2475.
- 4) Stereochemical assignment of oximes by ¹H NMR spectroscopy: G. J. Karabatsos and N. Hsi, Tetrahedron, 23, 1079 (1967).
- 5) A mixture of **3a** and **3b** was prepared from 2-acetoxy-1-phenyl-1-propanone and *0*-benzylhydroxylamine by a conventional method. Both isomers were easily separated by silica gel column chromatography.
- 6) The high erythro selectivity obtained in the reduction of (E)-isomer 3a should be ascribed to the proton bridged Cram's cyclic model⁷⁾ like the reduction of α -acyloxy ketones.¹⁾ On the other hand, the same transition state model is not applicable to the (Z)-isomer 3b. The three selectivity for 3b may be attributed to nucleophilic attack of the hydrosilane molecule to $C=N^{\pm}OCH_2Ph$ moiety through the Felkin transition state model.⁸⁾
- 7) D. J. Cram and D. R. Wilson, J. Am. Chem. Soc., <u>85</u>, 1245 (1963).
- 8) M. Chérest, H. Felkin, and N. Prudent, Tetrahedron Lett., 1968, 2199; N. T. Ahn and O. Eisenstein, Nouv. J. Chim., 1, 61 (1977).
- 9) LiAlH₄ reduction of β -hydroxy oximes: K. Narasaka, Y. Ukaji, and S. Yamazaki, Bull. Chem. Soc. Jpn., <u>59</u>, 525 (1986).

(Received March 4, 1986)